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A B S T R A C T

This article discusses the opportunities, applications and future directions of large-scale pretrained models, i.e.,
foundation models, which promise to significantly improve the analysis of medical images. Medical foundation
models have immense potential in solving a wide range of downstream tasks, as they can help to accelerate the
development of accurate and robust models, reduce the dependence on large amounts of labeled data, preserve
the privacy and confidentiality of patient data. Specifically, we illustrate the ‘‘spectrum’’ of medical foundation
models, ranging from general imaging models, modality-specific models, to organ/task-specific models, and
highlight their challenges, opportunities and applications. We also discuss how foundation models can be
leveraged in downstream medical tasks to enhance the accuracy and efficiency of medical image analysis,
leading to more precise diagnosis and treatment decisions.
1. Introduction

A salient distinction exists between traditional pretrained models
and contemporary foundation models. The former (Deng et al., 2009;
Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2018, 2019;
Dosovitskiy et al., 2021) typically require extensive supervised fine-
tuning to address specific downstream tasks, whereas the latter are
capable of employing few-shot learning, zero-shot learning, or prompt
engineering to manage a wide variety of tasks with a singular set of
model weights (Brown et al., 2020; Chowdhery et al., 2022; Ouyang
et al., 2022; Touvron et al., 2023a,b; Google, 2023). Consequently,
foundation models exhibit considerable generalizability and adaptabil-
ity, positioning them as a focal point of recent machine learning (ML)
research.

In the field of medical image analysis, however, task-specific ML
models are still the main methods used, especially for clinical appli-
cations such as computer-aided disease diagnosis. Developing medical
foundation models presents a significant challenge due to the diverse
imaging modalities used in medicine, which differ greatly from natural
images and are based on a spectrum of physics-based properties and en-
ergy sources. These modalities are based on the use of light, electrons,
lasers, X-rays, ultrasound, nuclear physics, and magnetic resonance.
The images produced span multiple scales, ranging from molecules
and cells to organ systems and the full body. Therefore, it may be
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infeasible to develop a unified multi-scale foundation model trained
from a combination of these multi-modality images.

In the following, we will investigate and present our vision for
the ‘‘spectrum’’ of foundation models and their uses in medical image
analysis, ranging from general vision models, modality-specific models,
to organ and task-specific models (Fig. 1). Fortunately, the growing
availability of high-quality publicly available annotated medical data
has led to the gradual emergence of specialized foundational models
with an innate capacity for generating more generalized represen-
tations of medical data. Therefore, foundation models trained with
medical images and/or natural images in a self-supervised manner may
serve as an improved solution basis for important clinical problems, will
result in advances in the field of medical imaging, and will improve the
efficacy and efficiency of disease diagnosis and treatment.

2. The spectrum of foundation models

Vision Foundation Models
A straightforward approach is to employ foundation models trained

from natural images (Carion et al., 2020; Dosovitskiy et al., 2021; Zhai
et al., 2022; Radford et al., 2021; He et al., 2022; Wang et al., 2022;
Oquab et al., 2023), and then design sophisticated algorithms to solve
downstream medical tasks.
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Fig. 1. The spectrum of foundation models in medical image analysis.
However, the lack of publicly available quality annotations in medi-
cal imaging has been the bottleneck for training large-scale deep learn-
ing models for many downstream clinical applications. It remains a
tedious and time-consuming job for medical professionals to hand-label
image data repeatedly, while providing a few differentiable sample
cases is feasible and complies with the training process of medical
residents. Vision foundation models, often trained on large-scale visual
images of various modalities, could serve as the basis for building
medical applications.

While vision foundation models can learn general representations,
medical images have unique characteristics whose features and pat-
terns differ significantly from those in natural images. Therefore, care-
fully designed algorithms are necessary to adapt them to domain-
specific medical problems. Fine-tuning, additional adapters, prompting
strategies, and specialized architectures or modifications are potential
solutions to achieve optimal performance in medical problems.

For instance, the recent Segmentation Anything Model (SAM) (Kir-
illov et al., 2023), a promptable segmentation system with zero-shot
generalization to unfamiliar objects and images, has demonstrated its
impressive performance on natural images. However, its out-of-the-box
performance on complex medical tasks such as pancreas, spine or cell
nuclei segmentation is not satisfactory (He et al., 2023; Roy et al., 2023;
Deng et al., 2023; Mazurowski et al., 2023; Shi et al., 2023). SAM can
be further tuned to achieve state-of-the-art performance by leverag-
ing high-quality downstream data and performing proper fine-tuning
strategies (Ma and Wang, 2023; Paranjape et al., 2023; Cui et al., 2023),
adding adapters with specially designed architectures (Wu et al., 2023a;
Gong et al., 2023; Chen et al., 2023b), or effective prompts (Huang
et al., 2023b; Cheng et al., 2023) with manual annotations. Venturing
a step further, we could explore the possibility of combining the output
of localization/detection algorithms with SAM or integrating SAM with
image processing and visualization software like 3D slicer (Liu et al.,
2023b). This fusion would pave the way for a robust pipeline tailored
for complex medical applications.

In general, a unified foundation model approach cannot achieve
state-of-the-art performance in many medical image analysis tasks due
to large variations present in organs and important structures, texture,
shape, size and topology (e.g., blood vessels), and imaging modalities.
Furthermore, it is noteworthy to mention that there are parameter/data
efficient tuning methods to adapt vision foundation models to address
image analysis challenges arising from long-tail medical data.

Modality-specific Foundation Models
Depending on the pathology, various types of imaging modalities

are employed for diagnostic and therapeutic purposes. They include
2

X-rays, Computed Tomography (CT), Magnetic Resonance Image (MRI),
Ultrasound imaging, and Positron Emission Tomography (PET). A
modality-specific foundation model is specifically designed for a group
of imaging modalities such as radiology images (including X-ray, CT,
MR, and Ultrasound) (Ghesu et al., 2022), 3D images (stacks of 2D CT
and MR images) (Chen et al., 2019), or a particular medical imaging
modality which includes X-ray (Tiu et al., 2022), CT (Huang et al.,
2023a; Wang et al., 2023d), endoscopy (Wang et al., 2023b), and
pathology (Chen et al., 2022, 2023a; Vorontsov et al., 2023) images.
It is then used to learn image-based features that are relevant to the
intended use of the particular modality. For example, a CT-specific
model may learn to identify features related to bone density and tissue
contrast, while an MRI-specific model may learn to identify features
related to soft tissue contrast and motion.

Vision foundation models trained on large-scale natural image
datasets, can provide a strong starting point for a wide range of medical
imaging analysis tasks. Using these vision foundation models, modality-
specific foundation models can leverage the unique characteristics of
each imaging modality and can result in models optimized for specific
modalities. While they can then lead to higher accuracy and efficiency
for the analysis tasks specific to that modality, they may not generalize
well to other modalities.

Organ/Task-specific Foundation Models
More specifically, the foundation models could be tailored to a

particular medical organ (Li et al., 2020b; Luo et al., 2022; Zhou et al.,
2023) or diagnostic task, such as segmentation (Antonelli et al., 2022;
Tang et al., 2022; Butoi et al., 2023). This use aims to address the
challenges posed by the variability in organ appearance across medical
images, as well as the diverse range of clinical tasks that are based on
image analysis (Fig. 2).

Collecting data for training organ/task-specific foundation models
can be challenging due to the need for large amounts of labeled data.
Nevertheless, a well-trained organ/task-specific foundation model can
provide better accuracy and interpretability as well as significantly
reduce the amount of labeled data required for new tasks, as it has
already learned relevant features from the previous training.

General vs. Specialized Foundation Models
By definition, specialists possess an in-depth understanding of a

particular subject matter, whereas generalists have a broader purview,
either within a single field or across multiple disciplines.

In the context of medical image analysis, a general AI system is char-
acterized as a multitask and multimodal platform capable of performing
a diverse range of tasks on multimodal images of different organs
and diseases. They include classification, detection, segmentation and
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Fig. 2. Different image modalities have large image-level variations, which may cause
difficulties when training a unified foundation model. Similarly each modality given
the imaging formation differences, results in images with significant variations in organ
appearance and related structures which determine which modality needs to be used
given a target organ pathology. Given modalities, leveraging fine-grained models for
learning organ appearance and pathology, will enable important clinical methods and
tools such as robust computer-aided diagnosis and surgical planning.

registration and utilize a single set of model weights (Moor et al., 2023;
Tu et al., 2023; Wu et al., 2023c). This approach and related models are
shown in the left part of Fig. 1, which shows the spectrum of foundation
models.

Conversely, specialized AI systems are designed to perform dis-
crete clinical tasks, such as the detection of pulmonary nodules, the
reconstruction of coronary arteries, or the diagnosis of hepatocellular
carcinoma. These systems are generally confined to a particular organ
and imaging modality, aligning more closely with the right side of the
foundation model spectrum (see Fig. 1).

Within the computer science community, there is an emerging focus
on the development of general AI frameworks. This shift is driven
by the technical innovation inherent in exploring large, multimodal
generative models capable of processing diverse types of medical data.
However, research in both academia, medical institutions, and in-
dustry, largely remains focused on the development of specialized
AI systems. This focus is attributable to several factors. Firstly, most
existing state-of-the-art medical image analysis systems use a single
type of imaging modality (unimodal) and are trained on a single task
such as segmentation or classification. Secondly, AI currently serves
primarily as an assistant to medical professionals who require targeted
support, which is consistent with their medical training. Consequently,
there is a pragmatic inclination toward designing specialized systems
that excel in terms of performance and accuracy in particular tasks.
Moreover, general type of AI systems tend to consume significantly
greater computational resources and often lack the required accuracy.

Both specialized and general AI system approaches offer distinct
advantages and are suited for different applications. Accordingly, we
advocate for a comprehensive exploration of the foundation model
spectrum to ascertain the optimal trade-off between developmental
effort and practical efficacy.

3. Data requirements for foundation models

Data to Pretrain the Foundation Models
Data is the cornerstone for training all foundation models. Preparing

data for medical foundation models has unique challenges and requires
domain knowledge since medical data are expensive to collect, anno-
tate interpret, and their quality varies significantly across hospitals and
clinical studies.
3

Real-world images are 2D projections of the 3D world and there-
fore it is relatively easy to collect a large number of images that
cover the variability of object(s)/scenes in terms of viewpoint, angles,
scales, appearance and locations. To the contrary, medical images are
acquired for a particular clinical purpose, through certain protocols
and scanners that require use by an expert who controls the machine
settings, including the view angles and scales. The image complexity
and variability typically come from scanner differences, scanning pro-
tocols, and, most importantly, anatomical and other variations among
individuals, disease appearance, location, and stage of the disease.

These unique properties of medical images manifest during the
development of public datasets. Classical public datasets were collected
for a specific purpose using certain protocols and scanners such as Eye-
PACS (De Vente et al., 2023), SUN-SEG (Ji et al., 2022b), ISIC (Cassidy
et al., 2022),Chestx-xay8 (Wang et al., 2017) CAMELYON (Litjens et al.,
2018), and EndoVis (Allan et al., 2020), thus usually limited to a single
modality and a specific anatomical area for a particular task. Recently,
general-purpose datasets have been obtained using multiple protocols
and scanners, such as Totalseg (Wasserthal et al., 2023), AMOS (Ji
et al., 2022a), FLARE (Ma et al., 2022, 2023), autoPET (Gatidis et al.,
2022), BraTS (Menze et al., 2014), ISLES (Hernandez Petzsche et al.,
2022), DigestPath (Da et al., 2022), and MIMICS (Johnson et al.,
2019). Correspondingly, the size of datasets has changed from small
scale to large scale, and data variability is increasing. When preparing
datasets to train medical foundation models, one should select the most
representative cases to train generalizable models and cover corner
cases instead of simply collecting large amounts of data.

In addition, instead of building a unified dataset covering all image
modalities (e.g., an ‘‘ImageNet’’ Deng et al., 2009 type of database
for medical data), a more feasible solution is to begin with modality-
specific datasets and then attempt to merge those which are comple-
mentary.

Data Adaptation for Downstream Tasks
The emergence of foundation models signals a notable reversal from

the previously encouraging trend of model openness and accessibility
within the scientific community. Although pretrained instances of cer-
tain models like LLaMA (Touvron et al., 2023a,b) and SAM (Kirillov
et al., 2023) are publicly accessible, models such as GPT-3 (Brown
et al., 2020), and GPT-4 (OpenAI, 2023) are not publicly available;
only API access is possible which is restricted to a limited number
of users. Furthermore, the datasets employed for training foundation
models are not made available to the wider research community. The
computational and engineering resources required to train foundation
models from the ground up are cost prohibitive for academia and most
companies. This creates a barrier that prevents the vast majority of
artificial intelligence researchers from participating in this pivotal ML
research and methodology.

Recent advancements in ML have facilitated the efficient adaptation
of foundation models for downstream tasks, requiring only a minimal
number of training samples (e.g., prompt engineering and efficient
methods for retraining). Recent research on the use of ML for med-
ical image analysis has been establishing benchmarks and releasing
datasets (Wang et al., 2023c; Yi et al., 2023). These efforts hold
significant promise for enabling the effective deployment of large-scale
foundation models to tackle an array of clinical challenges.

4. Applications and benefits of foundation models

Leveraging foundation models trained on large datasets to address
specific medical needs is crucial for achieving accurate and reliable
image analysis and disease diagnosis and prognosis, minimizing the
need for data collection, reducing the time and cost associated with
data labeling, and upholding patient data privacy and confidentiality.

Long-tailed Problems
Medical image analysis methods often face the challenging long-

tail data scenario, caused by often heavily imbalanced datasets in
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which many common disease cases coexist with relatively few rare
disease cases. Consequently, the scarcity of data for training models to
accurately identify these rare cases can lead to significant performance
degradation issues. The few-shot setting aligns perfectly with the long-
tailed scenario, which frequently arises in medical imaging when only
a few rare disease cases/high-quality annotations are available.

The initial stage involves selecting the appropriate foundation
model (including general, modality-specific, and organ/task-specific
models), depending on the application and available resources. Then,
data augmentation techniques are employed to augment the few an-
notated samples and make full use of the available supervised in-
formation. These techniques include image augmentation methods
like rotation, cropping, color transformation, noise injection, and ran-
dom erasing, as well as image generation techniques, e.g., GAN and
diffusion-based models (Chambon et al., 2022; Pinaya et al., 2022; Ding
et al., 2023).

Utilizing medical foundation models that have been trained on vast
amounts of data can reduce the labeled data required for training,
which minimizes the need for manual annotation by medical profes-
sionals. Additionally, these models can lead to more reliable diagnoses
and treatment decisions.

Explainable and Generalizable Models
The lack of explainability in deep learning models can lead to

distrust issues when clinicians are accustomed to making explainable
clinical inferences. Similar to explainability, the generalizability of a
model (a model trained on data from one medical center applied to
data from other medical centers with significant variations or domain
shifts) is also necessary due to the previously mentioned dataset limita-
tions. Therefore, innovative methodologies are needed to improve the
explainability and generalizability of the current models in order to be
used effectively in clinical practice (Wang et al., 2023e).

Foundation models provide a unified framework that can support
detection, segmentation, and classification tasks, which is essential for
evidence-based decision-making. Moreover, these models are typically
trained on large-scale datasets covering a wide range of medical cen-
ters, scanners, and protocols, resulting in promising generalizability of
the learned feature representations.

Privacy Preserving Methods
While the computer vision community has an established history of

open-sourcing large-scale datasets, such as the ImageNet, making pub-
licly available large amounts of medical data is currently not possible
due to regulatory and privacy issues. Foundation models offer an al-
ternative way for knowledge sharing, while protecting patient privacy.
Transfer learning techniques can be used to adapt the foundation model
using a smaller dataset of interest, avoiding directly accessing massive
raw data.

Furthermore, sharing multi-cohort knowledge in foundation models
is also feasible through the use of federated learning (Li et al., 2020a;
Kaissis et al., 2021), which enables training on data distributed across
multiple institutions or devices without the data ever leaving the
local machines. This paradigm ensures data privacy when training the
foundation models on large distributed datasets.

Foundation models can also be used to create synthetic data (Ding
et al., 2023) which can ensure data privacy preservation. Using gener-
ative models to create synthetic medical images which are statistically
similar to real medical images, researchers can train models on these
synthetic images instead of using real patient data.

Integration with Large Language Models
The study of vision-language models is gaining prominence due to

their capacity for extracting nuanced information and learning superior
representations. However, the majority of existing research predomi-
nantly concentrates on the analysis of X-ray images in conjunction with
their corresponding reports (Zhang et al., 2022; Tiu et al., 2022; Zhou
et al., 2022; Lee et al., 2023). The recent advances in large language
4

Fig. 3. Models trained on multiple medical data modalities can enable comprehensive
clinical solutions.

models (LLMs) which are trained on vast amounts of text data have
significantly improved natural language processing capabilities (Brown
et al., 2020; Ouyang et al., 2022; Touvron et al., 2023a,b; Chowdhery
et al., 2022; Google, 2023). The applications are further expanded
beyond textual domains with the integration of vision models (OpenAI,
2023; Wu et al., 2023b; Alayrac et al., 2022; Li et al., 2023a; Driess
et al., 2023; Wang et al., 2023a; Liu et al., 2023a). By combining lan-
guage and vision data, these large-scale vision-language models have
unlocked exciting possibilities for the future use of medical foundation
models.

Integrating medical image analysis systems with general domain
LLMs or medical domain LLMs (Singhal et al., 2023a,b) holds immense
potential for healthcare applications. For instance, these models can be
trained to generate descriptive captions for medical images, facilitating
automated radiology reports or succinct summaries of complex visuals.
Furthermore, decision support systems can also benefit from associating
visual features from medical images with text from patient records,
providing accurate disease diagnosis and prognosis (Li et al., 2023b;
Zhang et al., 2023; Wang et al., 2023f). However, these frameworks are
still preliminary, as they usually integrate existing LLMs as a module
by prompting, without fine-tuning and/or consolidating data modalities
such as medical images to these models. The efforts to open-source
foundation models and the ability to fine-tune them will be essential
in healthcare.

5. Future directions of medical foundation models

We have discussed the challenges and opportunities of foundation
models for medical image analysis. These insights can help us design
more effective and generalizable foundation models. Since foundation
models have only just begun to transform the way medical image
systems are built and deployed worldwide, issues and challenges are
still difficult to predict. We advocate that researchers from different
institutions and disciplines need to collaborate to investigate and ex-
plore the spectrum of foundation models for medical image analysis,
and contribute to the open-source community by releasing a family of
pretrained models which will work on various imaging modalities.

Future directions include multi-modality foundation models, com-
bining various data types (text, image, video, database, molecule) and
scales (molecule, gene, cell, tissue, patient, population). Foundation
models hold enormous promise as they can assimilate data from various
imaging modalities and can incorporate non-imaging modalities to
provide a more comprehensive understanding of a patient’s condition
and its assessment. By leveraging multi-modality foundation models,
medical professionals can achieve a more accurate disease diagnosis
and develop personalized treatment plans and disease prognosis. These
models can potentially improve the overall quality of medical care by
facilitating data sharing among different institutions, leading to more
efficient and effective patient care and healthcare.
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Advances in multi-modality foundation models can contribute to
the development of clinical use cases targeting patients with differ-
ent background and different diseases. A straightforward application
is to support radiologists throughout their workflow, such as draft-
ing structured radiology reports automatically and describing possible
abnormalities, disease diagnosis and prognosis, as well as proposed
treatment. Another possible use case is to assist surgeons. Integrating
image, language, and audio modalities, surgeons can communicate with
models to make real-time decisions in the operating room by detecting
and identifying the anatomical location of important target structures
often not clearly visible. The quest for comprehensive solutions to these
and other medical problems is expected to intensify and the near future
and produce the desired results (Fig. 3).
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