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Enhancing representation in radiography-
reports foundation model: a granular
alignment algorithm using masked
contrastive learning

Weijian Huang 1,2,3,6, Cheng Li 1,6, Hong-Yu Zhou 4, Hao Yang1,2,3,
Jiarun Liu1,2,3, Yong Liang2, Hairong Zheng 1, Shaoting Zhang 5 &
Shanshan Wang 1

Recently, multi-modal vision-language foundation models have gained sig-
nificant attention in the medical field. While these models offer great oppor-
tunities, they still face crucial challenges, such as the requirement for fine-
grained knowledge understanding in computer-aided diagnosis and the cap-
ability of utilizing very limited or even no task-specific labeled data in real-
world clinical applications. In this study, we present MaCo, a masked con-
trastive chest X-ray foundation model that tackles these challenges. MaCo
explores masked contrastive learning to simultaneously achieve fine-grained
image understanding and zero-shot learning for a variety of medical imaging
tasks. It designs a correlation weighting mechanism to adjust the correlation
between masked chest X-ray image patches and their corresponding reports,
thereby enhancing the model’s representation learning capabilities. To eval-
uate the performance of MaCo, we conducted extensive experiments using 6
well-knownopen-sourceX-ray datasets. The experimental results demonstrate
the superiority of MaCo over 10 state-of-the-art approaches across tasks such
as classification, segmentation, detection, and phrase grounding. These find-
ings highlight the significant potential of MaCo in advancing a wide range of
medical image analysis tasks.

Recent advances in machine learning have revolutionized the
potential of automated diagnostic systems (ADS) by achieving
expert-level performance, making it feasible to use deep learning to
improve the clinical workflow1–3. These ADS have demonstrated their
efficacy in addressing various routine clinical tasks, such as disease
diagnosis and lesion quantification, through training diverse
machine learning models1. However, this traditional approach of

training separate models from scratch for specific applications has
inherent limitations. It is computationally expensive and demands a
considerable amount of manually annotated data, which fundamen-
tally limits the development and scalability ofmedical applications4,5.
As a result, there is an urgent need to explore alternative approaches
that can improve the effectiveness of ADS while mitigating these
challenges6.
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One promising solution is to develop medical foundation models
that can handle multiple clinical applications simultaneously and
leverage pre-trained models to reduce the dependency on large
annotated datasets5–11. These models can be trained on diverse and
representative image-based datasets using self-supervised methods
that do not require annotations, allowing them to learn robust and
transferable feature representations that can be used across various
tasks and domains12,13. By incorporating simple task-based heads with
the well-learned feature representations from the foundation model,
thesemethods can achieve goodperformance in specific taskswithout
the need for extensive manual annotations14. This reduces the labeling
burden on clinical experts and enhances the potential for clinical
deployment.

However, with the expanding adoption of these methods,
researchers are facing increasing challenges15. These challenges pre-
dominantly stem from the need for high performance in clinical
deployment settings. Integrating expert knowledge with ADS has
demonstrated promising results, as it combines human insight with
data-drivenmachine learning approaches6,16,17. This approachholds the
potential to generate more reliable and intuitive results, making it a
valuable tool for improving the performance of ADS4. Coincidentally,
radiology reports obtained from daily clinical examinations often
contain valuable information regarding the healthcare history, ima-
gingmanifestations, anddisease severity of the patients. These reports
can serve as a valuable source of human knowledge, which can be
leveraged to augment the capabilities of ADS. However, extracting
meaningful information from radiology reports remains a pressing
issue due to their highly subjective and unstructured nature, which can
vary depending on the individual style of the clinical physician. Effec-
tive integration of rich human knowledge from radiology reports with
machine learning models continues to be an ongoing challenge.

Many endeavors have been made to leverage expert knowledge
from clinical reports12,18. These efforts can be broadly categorized into
two branches. The first branch focuses on improving radiological
representations for downstream tasks through fine-tuning. These

methods employ sophisticated self-supervised pretext tasks, such as
masked autoencoders (MAE)14 or combining with high-resolution
reconstruction (HR)19, to obtain robust image representations. These
representations are then integrated with the textual information to
enhance the performance of downstream fine-tuning tasks19,20. The
second branch draws inspiration from contrastive learning
approaches21 and aims to align the distributions of image features and
text features6,22,23. These methods not only achieve comparable fine-
tuning performance but also possess zero-shot capabilities to cope
with the complex and diverse clinical environment. We propose that
striking a proper balance between these methods would be advanta-
geous. However, such attempts have not been extensively explored in
the medical field thus far.

In this paper, we focus on two key aspects of building a vision-
language foundation model for chest X-ray analysis. Firstly, we
emphasize the significanceof incorporating clinical reports to enhance
the model’s semantic comprehension of radiographic images6,16,19. We
believe that integrating clinical reports, which contain rich profes-
sional knowledge, into image-based models is a crucial advancement
in the realm of precision medicine. Secondly, we advocate for the
foundation model to possess a certain level of capability even in
extreme scenarios with limited annotations1, where only a scarcity of
labeled data may exist for downstream tasks. This ensures enhanced
applicability of the constructed foundation model, even in situations
where no annotations are available for specific tasks. To address these
requirements, we introduce a masked contrastive chest X-ray foun-
dation model (MaCo), which is designed to facilitate cross-modal
vision-language knowledge comprehension, thereby enhancing fea-
ture representation learning. As depicted in Fig. 1(a), MaCo integrates
the strengths of pretext task-based learning and contrastive learning,
while incorporating a correlation weighting mechanism to further
enhance the capabilities of representation learning. Through extensive
experiments, we have thoroughly evaluated the effectiveness of MaCo
in various downstream fine-tuning as well as zero-shot learning tasks.
Experimental results demonstrate the superiority of MaCo over 10

Fig. 1 | TheproposedMaCo framework. aAn illustrationof themaskedcontrastive
learning strategy employed in MaCo, which leverages the advantages of both
contrastive learning and pretext tasks. LR denotes the low-resolution image
obtainedafter downsampling,whileHRrefers to theoriginalhigh-resolution image.

b The proposed correlation weighting mechanism, (i) shows the basic structure of
MaCo,where imageand text representations are comparedusing a contrastive loss,
(ii) presents the procedure to generate the importance score, and (iii) plots the
method to build correlations.
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existing state-of-the-art models. The exceptional performance
achieved byMaCo in zero-shot learning tasks highlights its potential to
reduce annotation costs in medical applications.

Results
To validate the effectiveness of MaCo as a foundational model for
chest X-ray analysis, webegin by evaluating its performance on various
fine-tuning tasks, including classification, segmentation, and detection
tasks while utilizing different numbers of annotated fine-tuning data.
Then, we provide qualitative and quantitative results to showcase
MaCo’s zero-shot phrase-grounding and zero-shot classification cap-
abilities. Finally, visualizations of the proposed weighting mechanism
are presented to demonstrate how our network progressively targets
disease-relevant regions. It should be noted that all the metrics for the
comparison algorithms are directly drawn from their own publication
reports. If they haven’t reported the results for specific tasks, we follow
the report results from6,19,24, unless otherwise specified.

Fine-tuning classification
Wepresent the fine-tuning results of variousmethods on classification
tasks using three datasets, CheXpert, RSNA, and NIH ChestX-ray. Dif-
ferent ratios of annotated samples for fine-tuning were experimented
with, and the results obtained by our proposed MaCo are compared
with those generated by the currently prevailing pre-text-based non-
contrastive learningmethods and contrastive learningmethods.While
non-contrastive learning methods lack zero-shot capabilities, which
may limit their applicability in clinical settings, we include these

methods in our comparative analyses to achieve a more comprehen-
sive evaluation.

We conduct comparative analyses between MaCo and four state-
of-the-art non-contrastive learning methods, Ark, M3AE, REFERS, and
MRM, and five state-of-the-art contrastive learningmethods, ConVIRT,
GloRIA, BioViL, MedKLIP, and M-FLAG. The results are presented in
Table 1. MRM adopts both masked autoencoder and high-resolution
reconstruction as the pretext tasks. It achieves promising fine-tuning
classification performance under different settings, surpassing the five
existing state-of-the-art contrastive learning methods. However, it
should be noted that MRM, as well as the other non-contrastive
learning methods, sacrifices the zero-shot capabilities. In addition,
they cannot perform zero-shot phrase grounding for text-image cor-
relation visualization, which is an important strategy to enhance the
model’s explainability. This trade-off may potentially reduce their
scalability and applicability in real-world clinical applications. Besides,
the performance advantage of non-contrastive learning methods over
contrastive learning methods may diminish when the scale of pre-
training datasets in themedical domain increases, as it has been shown
that contrastive learning methods can benefit more from larger
datasets21. In the current setting, the models were pre-trained with
MIMIC-CXR, which comprises 200,000 image-report pairs. This data-
set size is considerably smaller compared to natural datasets, which
can exceed 400million samples (CLIP21). Nevertheless, MaCo achieves
a classification performance comparable to MRM while retaining the
capabilities of zero-shot learning and text-image correlation visuali-
zation. Compared to the five existing contrastive learning methods,

Table 1 | Comparison of AUC scores (%) for classification performance on three open-source datasets with varying ratios of
annotated samples

Method Zero-shot CheXpert NIH RSNA

1% 10% 100% 1% 10% 100% 1% 10% 100%

Ark × – – 88.7 – – 82.9 – – 74.7

M3AE × 86.2 87.3 87.9 – – – 89.0 90.8 92.3

REFERS × 87.2 88.1 88.2 76.7 80.9 84.7 89.4 91.6 92.7

MRM × 88.5 88.5 88.7 79.4 84.0 85.9 91.3 92.7 93.3

ConVIRT ✓ 85.9 86.8 87.3 66.2 76.6 81.3 77.4 80.1 81.3

GLoRIA ✓ 86.6 87.8 88.1 67.1 76.6 81.3 86.1 88.0 88.6

BioViL ✓ – – – 69.5 75.3 82.5 88.1 88.4 89.1

MedKLIP ✓ – – – 77.2 78.9 83.2 87.3 88.0 89.3

M-FLAG ✓ – – – 62.2 71.6 78.7 – – –

MaCo (Ours) ✓ 88.7 88.7 88.9 79.3 83.8 85.9 91.5 92.7 93.6

Methods with and without zero-shot capabilities have both been included for comprehensive evaluation.

Table 2 | Disease-level classification performance (AUC: %) on the NIH Chest X-ray dataset

Method Zero-shot Ate. Car. Eff. Inf. Mas. Nod. Pna. Pnx. Con. Ede. Emp. Fib. Thi. Her. AVG

Model Genesis × 78.8 84.5 86.6 71.1 81.9 73.2 73.0 85.6 79.2 87.8 86.6 81.0 75.8 85.2 81.0

C2L × 81.1 90.2 88.0 72.0 82.7 74.1 75.3 85.9 81.0 88.1 88.0 80.8 76.2 86.8 82.2

Context Restoration × 75.8 82.9 84.8 70.0 79.6 69.5 69.4 84.0 76.4 86.6 84.8 78.6 73.2 83.0 78.7

TransVW × 79.8 85.0 87.1 72.3 82.6 74.4 74.0 86.1 80.0 88.2 87.1 81.8 76.6 85.9 81.7

REFERS × 83.0 92.3 88.7 74.1 85.5 76.7 77.0 89.1 82.1 90.2 91.4 83.9 78.5 93.3 84.7

MRM × 84.2 93.0 89.6 71.8 88.2 78.5 77.3 90.2 82.2 91.0 94.3 86.7 81.4 94.4 85.9

ConVIRT ✓ 80.1 83.6 85.1 66.1 80.0 74.9 70.0 86.7 80.8 90.2 90.1 79.3 74.7 96.3 81.3

GLoRIA ✓ 82.6 83.3 86.0 66.4 81.8 73.5 71.0 84.5 81.3 89.8 93.1 78.9 76.1 97.5 81.8

BioViL ✓ 81.9 85.4 86.1 66.6 83.0 76.3 70.9 86.0 82.9 90.3 92.5 79.1 76.4 97.0 82.5

MedKLIP ✓ 82.9 85.9 87.2 65.7 83.8 76.5 73.8 88.1 82.8 90.8 92.2 79.8 77.8 98.0 83.2

MaCo (Ours) ✓ 84.3 92.8 89.4 72.4 87.8 78.8 77.5 90.0 82.2 90.7 94.4 87.0 80.3 95.2 85.9

Methods with and without zero-shot capabilities have both been included for comprehensive evaluation.
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MaCo achieves the highest scores across different datasets and dif-
ferent ratios of utilized fine-tuning labeled data.

The results of various methods on disease-level classification
using the NIHChestX-ray dataset are presented in Table 2. All methods
were fine-tuned using 100% annotated data. To provide a more com-
prehensive evaluation, we introduce four additional image-based
pretext task comparative methods, namely Model Genesis25, C2L26,
Context Restoration27, and TransVW28. Consistent with our observa-
tions in dataset-level classification tasks, among the different non-
contrastive learning methods, MRM demonstrates the best results in
this disease-level classification task. When it comes to contrastive
learning methods with zero-shot capabilities, MedKLIP and our MaCo
show promising performance. Leveraging the rich information
embedded in medical reports, MedKLIP demonstrates advanced
results in classifying certain diseases, achieving an AUC score of 82.8%
for consolidation, 90.8% for edema, and 98.0% for hernia. On the other
hand, our proposed MaCo excels in achieving superior performance
across 11 other disease categories when compared to other contrastive
learning methods (ConVIRT, GLoRIA, BioViL, and MedKLIP).

Additionally, the GFLOPS (Giga Floating Point Operations Per
Second) of our MaCo and different existing methods (MRM, GLoRIA,
and BioViL) were measured using the open-source package ‘thop’ to
evaluate the computational complexity. The GFLOPS for MRM,
GLoRIA, and BioViL were recorded as 12.7, 16.2, and 19.4, respectively.
Our proposed algorithm,MaCo, demonstrated a GFLOPS value of 16.9.
These values indicate that MaCo’s computational resource consump-
tion is within a reasonable range.

Overall, in this downstream fine-tuning classification task, MaCo
has demonstrated comparable performance compared with non-
contrastive learning methods that lack zero-shot capabilities. Fur-
thermore, when compared to methods with zero-shot capabilities,
MaCo outperforms them with substantial margins in terms of classi-
fication performance. These observations validate the effectiveness of
MaCo for this specific task, making it a highly promising method for
relevant clinical applications.

Fine-tuning segmentation
In this section, we discuss the segmentation results obtained by dif-
ferent methods through fine-tuning with 10% and 100% annotated
data. We conducted experiments on two datasets, SIIM and COVID
Rural, and compared our MaCo with eight state-of-the-art methods.
Results are provided in Table 3.

Our MaCo consistently outperforms the eight state-of-the-art
approaches in all experimental settings. Specifically, on the SIIM
dataset, when the annotated fine-tuning sample ratio is set to 10%,
MaCo achieves slightly better performance with a Dice score of 72.6%
than the second-bestmethod,MedKLIP, which achieves aDice scoreof

72.1%. As the annotated sample ratio increases to 100%, MaCo
demonstrates significant improvement, increasing the Dice score by
10% compared to MedKLIP. This highlights MaCo’s ability to capitalize
on additional labeled data to enhance its feature representation and
segmentation accuracy. On the COVID Rural dataset, MaCo’s perfor-
mance enhancement is even more impressive, surpassing the eight
comparative approaches by significantmargins.Under both annotated
sample ratios, MaCo achieves Dice scores that are more than 30%
higher than the best comparative method, MedKLIP.

These experiments highlight the advantages of MaCo in terms of
segmentation performance, showcasing its potential in reducing reli-
ance on manual labeling and improving the efficiency of chest X-ray
image segmentation.

Fine-tuning detection
We evaluated the performance of MaCo on the RSNA dataset for the
task of object detection. It is worth noting that the majority of the
contemporary state-of-the-art detection methods adopt feature pyr-
amids to enhance detection performance29. However, there is a lack of
robust extensionmethods that canobtain featurepyramids formodels
pre-trained on the Vision Transformer (VIT) backbone29. This limita-
tion potentially hinders the advantages of VIT-based models in
detection tasks. Notably, our proposed MaCo utilizes the VIT archi-
tecture as its image encoder. To solve this issue, we employed the
detection framework of VITDET, which is one of the few methods
capable of accommodating pre-trained VIT models for the detection
task. Besides, we also implemented CLIP based on the VIT backbone as
a baseline for fair comparison.

Six state-of-the-art detection methods that use ResNet backbone
for the extraction of feature pyramids are introduced for comparison
(Table 4)30. The results highlight the following observations: Firstly,
among the ResNet-based approaches, LoVT achieves the best perfor-
mance with a mean average precision (mAP) score of 13.2 at the
annotated sample ratio of 10%. However, at the annotated sample ratio
of 100%, CLIP outperforms LoVT. Secondly, as expected, there is a
decline in performance when replacing the backbone of CLIP with VIT.
Specifically, the VIT-based CLIP experienced a 2.5 mAP score decrease
at the annotated sample ratio of 100%. Thirdly, compared to the VIT-
based CLIP, our proposed MaCo demonstrates superior detection
performance under both annotated sample ratios. This indicates the
effectiveness ofMaCo in the taskof objectdetection.Nevertheless, our
findings suggest that while VIT-based approaches, including our pro-
posed MaCo, show promise in object detection, further research is
needed to develop effective methods for incorporating feature pyr-
amids into VIT-basedmodels. This endeavor is crucial to enhance their
effectiveness and bridge the performance gap between ResNet-based
and VIT-based models in object detections.

Table 3 | Comparison of Dice scores (%) for segmentation
performance on the SIIM and COVID Rural datasets with
varying ratios of annotated samples

Method SIIM COVID Rural

10% 100% 10% 100%

MGCA 59.3 64.2 – –

M-FLAG 61.2 64.8 – –

Med-UniC 62.2 64.4 – –

LoVT – 44.1 – 51.2

ConVIRT 43.2 59.9 27.2 37.4

GLoRIA 46.9 63.4 28.1 38.7

BioViL 62.7 70.0 32.4 41.6

MedKLIP 72.1 79.4 35.4 44.0

MaCo (Ours) 72.6 89.4 68.3 75.1

Table 4 | Comparison of mean Average Precision (mAP)
scores (%) for detection performance on the RSNA dataset
with varying ratios of annotated samples

Method Backbone RSNA

10% 100%

ImageNet ResNet 12.4 8.0

BYOL ResNet 11.0 17.3

SimCLR ResNet 12.2 18.8

PixelPro ResNet 11.0 17.4

CLIP ResNet 10.7 19.9

LoVT ResNet 13.2 18.1

CLIP* VIT 10.6 17.4

MaCo (Ours) VIT 11.9 19.2

*indicates our reimplemented CLIP version with the VIT backbone.
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Zero-shot classification
Zero-shot classification has recently emerged as an important task
attracting significant attention in the field. It plays a crucial role in
validating the performance of multi-modal models and addressing
extreme annotation limitations in clinical environments6,7,16. In this
work, we conducted zero-shot experiments on three open-source
datasets: NIH, RSNA, and SIIM. We compared the performance of our
proposedMaCowith five state-of-the-art algorithms: ConVIRT, GloRIA,
BioViL, MedKLIP, and CheXzero.

As depicted in Table 5, the results demonstrate that our proposed
MaCo outperforms all five comparative algorithms across all three
datasets. This indicates that MaCo is capable of better aligning the
image feature space and text feature space, leading to improved zero-
shot classification performance. Moreover, on the NIH dataset, we
provide zero-shot classification performance of various methods
across 14 disease categories, as shown in Supplementary Fig. 1. Overall,
MaCo achieves the best classification performance in the majority of
diseases.

These zero-shot classification experiments further validate the
effectiveness ofMaCo in reducing the reliance onmanual annotations.
This positions MaCo as a valuable tool in a wider range of clinical
applications, where annotated samples are difficult and expensive to
collect.

Zero-shot phrase grounding
Interpretable visualization of the correlations between image and text
modalities is necessary to establish clinical trust and remove barriers
to clinical application. Phrase grounding serves as an effective tool to
achieve this purpose. Here, we evaluate the zero-shot phrase-

grounding performance of MaCo on the MS-CXR dataset, which pro-
vides description phrases and corresponding bounding boxes.

Thanks to the proposed correlation weighting mechanism, we
were able to utilize the weights of the fully connected (FC) layer to
perform phrase grounding (the FC layer used to generate the impor-
tance score shown in Fig. 1(b)(ii)). Specifically, each weight in this FC
layer corresponds to the importance of one image patch, and thus, it
can be utilized for phrase-grounding evaluation. We first applied a
softmax function (with a soft threshold τw) to the weights
(w= fwig 2 RN × 1, i = 1, 2,…,N, andN = 196 is the total number of image
patches) of this FC layer, obtaining the normalized weights bw 2 RN × 1.bw is then utilized to multiply with the patch-based image representa-
tions obtained from the image encoder venc 2 RN ×C (C is the feature
dimension), generating w 2 RN ×C . After that, w is multiplied with the
text representations from the text encoder tenc 2 R1 ×C to generate a
phrase-grounding score map spg =w× tTenc 2 RN × 1. Finally, spg is
reshaped and bilinearly upsampled to the dimension of the input
image, which is then compared with the ground truth to calculate the
contrast-to-noise ratio (CNR) and mean Intersection over Union
(mIoU) scores for the characterization of phrase-grounding
performance.

In Table 6, we present the quantitative phrase-grounding results
of MaCo as well as three existing methods: ConVIRT, GLoRIA, and
BioViL. Among the three comparative methods, BioViL obtains the
bestmetricswith amIoU of 0.266 and a CNR of 1.027. However, BioViL
is pre-trained using three datasets, whereas ConVIRT and GloRIA were
pre-trained on only one dataset. Compared with the twomethods pre-
trained on the same dataset, ConVIRT and GLoRIA, MaCo achieves
better performance in termsof bothCNRandmIoU. Specifically,MaCo
achieves aCNRof 1.144, even surpassing BioViL. The observed superior
performance of MaCo can be attributed to the proposed correlation

Table 5 | Comparison of AUC scores (%) for zero-shot classi-
fication on the NIH, RSNA, and SIIM datasets

Method NIH RSNA SIIM

ConVIRT 61.0 80.4 64.3

GLoRIA 66.1 71.5 53.4

BioViL 69.1 82.8 70.8

CheXzero 73.0 85.8 68.8

MedKLIP 76.8 86.9 89.2

MaCo (Ours) 77.3 88.6 90.4

Table 6 | Comparison of CNR and mIoU for zero-shot phrase
grounding on the MS-CXR datasets

Method Pretrained dataset CNR mIoU (%)

BioViL PubMed + MIMIC-III + MIMIC-CXR 1.027 26.6

ConVIRT MIMIC-CXR 0.818 23.8

GLoRIA MIMIC-CXR 0.930 24.6

MaCo (Ours) MIMIC-CXR 1.144 25.5
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Fig. 2 | Qualitative phrase-grounding results whenprovidedwithdescription phrases.We visualize the association of vision and language on theMS-CXRdataset. The
description phrases are marked in white font in the image column. The gold standard annotations outlined by clinical experts are represented with dashed boxes.
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weighting mechanism, which synergistically combines contrastive
learning and masked autoencoder (MAE) in a cohesive manner.

Qualitative phrase-grounding results are presented in Fig. 2.
Visual-textual correlation heatmaps obtained by differentmethods for
six instances are plotted. These examples encompass various diseases,
including atelectasis, opacity, and cardiomegaly. Overall, compared to
the two existing methods, GLoRIA and BioViL, MaCo generates
stronger responses in disease regions that correspond to the phrases
across different diseases, indicating its enhanced capability in cap-
turing visual-textual correlations.

The above results demonstrate the effectiveness of MaCo in zero-
shot phrase grounding. It achieves promising results both quantita-
tively and qualitatively.These results collectively emphasize the
potential of MaCo as a powerful tool for interpreting multi-modal
medical data.

Granular alignment analysis of the proposed correlation
weighting mechanism
To verify the effectiveness of the proposed correlation weighting
mechanism in achieving granular alignment, we visualize the weights
of the FC layer in Fig. 1(b)(ii), which corresponds to the importance of
each image patch. Following our demonstration in Sec. 5, we reshape
the normalized weight bw 2 RN × 1 to generate the weight map with the
dimension of

ffiffiffiffi
N

p
×

ffiffiffiffi
N

p
and plot the weight map in Fig. 3. Each pixel in

theweightmap corresponds to theweight assigned to an image patch.
During the initial training stage, the weights are dispersed without
prominent positions, indicating that the network has yet to learn the
distinctions between different patches. As the training progresses over
epochs, the weights in the central region of the image (typically
representing the lungs) gradually increase, while the weights in the
background regions decrease. This shift indicates that the model
focuses more on image patches near the lungs, considering them to
contain more informative content compared to the background
regions. The weight map not only visualizes the model’s attention on
different image patches but also holds the potential to enhance
downstream task performance, as demonstrated in the following
analysis.

In Supplementary Table 1, we list the phrase-grounding results with
different τw values utilized in the softmax function (please refer to Sec. 5
for details). We observed that the grounding performance changes with
different τw settings. Specifically, when τw is set to 0.01,MaCo attains the
highest CNR of 1.149, whereas with τw set to 0.02, MaCo achieves the
highestmIoU of 25.5. As τw continues to decrease, the scores of CNR and
mIoUbegin todecrease. Consideringbothmetrics,we selected τw =0.02
for our final phrase-grounding evaluation in Sec. 5.

Ablation study
In this section, we investigate the contributions of each component in
MaCo through phrase-grounding and fine-tuning classification tasks,
as shown in Table 7.WeuseCNR,mIoU, and pointing game (PG) scores
to characterize the phrase-grounding results and AUC to characterize
the classification results.

We startwith theMAEmodel trained solely on the imagemodality
as our baseline. This baseline model lacks the capability to leverage

information from radiology reports, thus it cannot perform phrase
grounding. For fine-tuning classification on the RSNA dataset, MAE
achieves the lowest AUC scores of 83.2%, 89.2%, and 91.0% at the
annotated sample ratios of 1%, 10%, and 100%, respectively. The
incorporation of a high-resolution reconstruction task(+HR) inTable 7,
slightly enhanced the classification performance when compared to
MAE. The introduction of CLIP (+CLIP) empowered the model with
zero-shot capabilities, achieving amIoU of 21.2% and a CNRof 0.860 in
the zero-shot phrase-grounding task using the MS-CXR dataset. The
introduction of CLIP also led to substantial improvements in the
classification performance, underscoring the value of integrating
expert knowledge frommedical reports into the image representation
learning model. Our final model that integrates all these components
with a correlation weighting mechanism (+Correlation Weighting)
achieves the best performance in both the zero-shot phrase-grounding
and fine-tuning classification tasks. Specifically, the phrase-grounding
scores in terms of CNR and mIoU increase significantly from 0.860 to
1.144 and from 21.2% to 25.5%, respectively. Concurrently, the AUC
scores for the fine-tuning classification task are improved from 90.9%,
92.%, and 93.0% to 91.5%, 92.7%, and 93.6% at the annotated sample
ratios of 1%, 10%, and 100%.

Discussion
Fine-grained knowledge understanding and fine-tuning with limited
annotateddata for downstream tasks pose significant challenges in the
development ofmedical foundationmodels. In this paper, we propose
MaCo, a approach that addresses these challenges by achieving gran-
ular alignment between radiography and reports and extracting fine-
grained representations.

A comprehensive evaluation of the effectiveness of MaCo was con-
ducted utilizing 6 open-source datasets, involving a range of label-
efficient fine-tuning tasks such as classification, segmentation, and
detection. More than 10 state-of-the-art methods were included in the
comparative analysis. The results revealed that our proposed MaCo
demonstrated promising prospects across a range of tasks. Additionally,
we validated the zero-shot capabilities of MaCo through zero-shot clas-
sification and phrase-grounding tasks. Both qualitative and quantitative
indicators showcased the superiority of MaCo compared to over the ten
methods. Furthermore, we quantified the degree of correlation between
the location of each radiograph patch and its corresponding report
through the proposed correlation weighting mechanism. This analysis
highlighted themodel’s capability in effectively discriminating regions of

Epoch 1 10 30 40 5020

Fig. 3 | Visualization of theweights of the proposed correlationweightingmechanism. The number under the picture indicates the training epoch. After training, the
weights are larger in the central regions with a higher incidence of disease and smaller in the background regions around the edges.

Table 7 | Ablation study results with zero-shot phrase
grounding and fine-tuning classification experiments on the
MS-CXR and RSNA datasets

Method MS-CXR RSNA

CNR mIoU PG 1% 10% 100%

MAE – – – 83.2 89.2 91.0

+HR – – – 83.3 89.3 91.0

+CLIP 0.860 21.2 0.330 90.9 92.1 93.0

+Correlation Weighting 1.144 25.5 0.373 91.5 92.7 93.6
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radiographs that the model tends to focus on, enhancing the reliability
and acceptability of the model in clinical applications.

While MaCo has demonstrated promising performance as a chest
X-ray foundation model, it still faces several limitations. Firstly, to
further enhance the robustness and generalizability ofMaCo, there is a
need to increase the scale of MaCo’s pre-training data for wider use.
This can be achieved by collecting a more diverse range of medical
images from various imaging equipment and incorporating reports
from a larger number of clinical physicians. By expanding and diver-
sifying the dataset, MaCo can learn from a broader range of cases,
leading to improved performance on diverse real-world scenarios.
Secondly, MaCo currently employs the widely used language model
BERT for text encoding. However, with the proliferation of larger and
more specialized language models, future attempts should consider
utilizing larger and more clinically oriented language models to
achieve more effective domain-specific language understanding.
Lastly, challenges associated with clinical deployment, including data
privacy concerns and ethical considerations, need to be investigated in
the future.

In conclusion, this paper introduces MaCo, a chest X-ray foun-
dation model designed to address the challenges of fine-grained
knowledge understanding and limited annotation learning in the
medical domain. MaCo incorporates granular alignment, leveraging
the advantages of both pretext task learning and contrastive learning.
The promising results obtained from fine-tuning and zero-shot gen-
eralization experiments underscore the potential of MaCo in advan-
cing medical foundation models. This work opens up avenues for
further research and development in the field, bringing us towards
more effective and generalizable medical AI solutions.

Methods
The high cost of annotation has long been a persistent challenge in the
medical field. One prevalent approach to alleviating the annotation
reliance in downstream tasks is the utilization of pre-trained models.
With the rapid advancements in natural languageprocessingmodels in
recent years, there has been a growing interest in integrating expert
knowledge from clinical reports with medical images. In the following
sections, relevant studies in themedical domain, specifically within the
realm of self-supervised pretext task-based and contrastive learning
models, will be introduced. These studies serve as the foundation for
our proposed MaCo. We declare that the proposed methods comply
with all relevant ethical regulations and have been approved for
research by the Shenzhen Institute of Advanced Technology.

Pretext task-based methods
The goal of pretext task-based methods is to learn semantically
meaningful image representations without utilizing any downstream
task annotations31,32. These pretext tasks typically involve self-
supervised learning techniques, such as using randomly augmented
images or training on down-sampled images for high-resolution
reconstruction. One widely utilized pretext task-based method is
MAE. MAE14 applies a random masking technique to image patches
within the input data. Subsequently, a reconstruction decoder is
employed to recover the masked regions. By engaging in the recon-
struction process, MAE is able to learn image features that can be
subsequently utilized for various downstream tasks. Due to its sim-
plicity and effectiveness, MAE has gained considerable popularity,
including in the domain of medical image-text modeling. Drawing
inspiration from MAE, Zhou et al.19 employed a similar masking
mechanism in both the text branch and the image branch of their
model (MRM). They leveraged the vision representation as a supple-
mentary component to the text branch and enhanced the feature
representations through back-propagation optimization. Similar to
MRM, Chen et al.33 also employed masking in both the image and text

modalities with a single transformer to integrate and couple the fea-
tures of the image and text modalities (M3AE).

Although the aforementioned methods have shown promising
performance in downstream fine-tuning tasks, their zero-shot cap-
abilities are constrained by the adopted modality coupling strategy.
This limitation impede their ability to generalize to unseen tasks,
especially when dealing with unlabeled datasets.

Contrastive learning-based methods
Contrastive learning-based methods, on the other hand, have recently
gained significant attention due to their unique zero-shot
capabilities21,34. Contrastive learning aims to minimize the similarity
distance between paired data points within a training batch while
simultaneously maximizing the dissimilarity between unpaired data
points. By leveraging this approach, the trained models become pro-
ficient in differentiating between paired and unpaired images and
texts, thereby acquiring the ability to generalize to unseen data sam-
ples, known as zero-shot capabilities35.

Zhang et al.35 were pioneers in introducing contrastive learning as
a proxy task in the field of medicine. Their study demonstrated the
efficacy of contrastive learning within the medical domain. Building
upon this foundation, Wang et al.36 further investigated the impact of
false negative samples on the performance of contrastive learning
methods. Boecking et al.23 recognized the distinct language patterns
found inmedical reports, prompting a redesign of the languagemodel
formedical vision-language processing. Bannur et al.37 and Zhou et al.12

employed past radiology images and multi-view images, respectively,
for joint training purposes. In more recent developments, Wu et al.6

and Zhang et al.16 integrated a report filter to extract medical entities
and employed a more complex modal fusion module to aggregate
features, thereby achieving improved results. On the other hand, to
establish fine-grained correspondence between images and reports, Li
et al.38 aligned visual and textual semantics at different levels with
explicit constraints. Huang et al.22 proposed a local fine-grained
weighting mechanism. This mechanism calculates the similarity
between each word and image patches, resulting in word-level
responses. Similarly, Wang et al.39 introduced the concept of multi-
granularity alignment to explicitly learn the correspondence between
fine-grained vision and text tokens.

These contrastive learning-based methods have achieved com-
parable performance in downstream fine-tuning tasks to those pretext
task-basedmethods. More importantly, somemethods, such as BioViL
andGLoRIA, have demonstrated inspiring zero-shot capabilities, which
greatly enhance the task generalization capability of medical models.

MaCo
We introduce MaCo, a chest X-ray radiography-report foundation
model with zero-shot capabilities, based on masked contrastive
learning. Themotivation behindMaCo is to leverage the advantages of
both contrastive learning-based and pretext task-based methods to
acquire enhanced semantic latent representations. MaCo investigates
the masked autoencoder along with contrastive learning to facilitate
learning from paired radiological images and medical reports. Addi-
tionally, we propose a correlation weighting mechanism in MaCo that
weights the contrastive loss based on the importance of sampled
image patches. This mechanism helps prioritize informative patches,
resulting in more effective learning and better representation of rele-
vant features. Figure 1 shows the framework ofMaCo, which integrates
the strengths of contrastive learning and pretext task methods. The
detailed methodology will be introduced in the subsequent sections.

Masked high-resolution image reconstruction for image feature
extraction. To extract meaningful feature representations from input
images, we adopt MAE proposed by He et al.14 as our primary image
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representation extractor. MAE employs a reconstruction pretext task
that is elaborately designed to restore the masked image, thereby
extracting meaningful representations of the image.

Specifically, the input image is partitioned into regular, non-
overlapping patches, and a subset of the patches is randomly sampled
as the inputs of the model while the remaining ones are excluded. Let
us define B as the batch size, and C as the feature dimension.
N = N s + Nmsk represents the total number of divided image patches,
where N s and Nmsk correspond to the number of sampled and masked
patches, respectively. The encoder’s prediction, given the masked
image as input, is represented by venc with the size of B × NsC, and the
decoder’s prediction is represented by vreconwith the size ofB ×NC. Let
grecon denote the corresponding ground truth that is partitioned in the
same way as the input image. The loss function of the masked auto-
encoder reconstruction in a batch can be written as:

Lmae = vmsk
recon � gmsk

recon

��� ���2 ð1Þ

where ∣∣ ⋅ ∣∣ represents the L2 norm. Here, we only focus on the recovery
of the masked patches, such that vmsk

recon and gmsk
recon are the recovery of

the masked patches and its corresponding ground-truth patches.
High-resolution reconstruction is also an effective pre-training

approach in capturing the detailed representations of images19. This
method takes low-resolution images as inputs for the image encoder
and imposes constraints on the image decoder using original high-
resolution images.

In MaCo, we incorporate both masked image reconstruction and
high-resolution reconstruction as pre-text tasks during pre-training.
The input image is firstly down-sampled to a smaller resolution. In this
work, the down-sampling ratio is set to 2. Then, following the practice
adopted in MAE, the down-sampled input image is partitioned into N
image patches, and a random subset of these patches is sampled as
inputs to the image encoder. The decoder outputs high-resolution
reconstruction results for the down-sampled input image patches.
Following MAE, we perform high-resolution reconstruction only on
masked patch representations. Therefore, MaCo follows the same
training procedure as MAE, with the difference being that the input to
MaCo is the down-sampled version of the original images. Let v0recon
denotes the image decoder’s results with input of the down-sampled
image, the loss function of MaCo’s pretext task is defined as:

Lpret = v0msk
recon � gmsk

recon

��� ���2 ð2Þ

Report feature extraction. We adopt BERT40, a classical natural lan-
guage processing model that has achieved good performance across
various language understanding tasks, to extract expert knowledge
from clinical daily examination reports.

The clinical reports are processed by dividing them into multiple
sentences. In this pre-processing step, we also incorporate random
sentence selection and shuffling. Next, we use a wordpiece tokenizer
to convert the pre-processed reports into a sequence of numerical
tokens that can be processed by BERT. The wordpiece tokenizer
breaks down each word into sub-word units and maps them to their
corresponding numerical representations. This allowsBERT to capture
themeaning of the text at a more granular level, improving the quality
of the sentence representations.

We feed the sequence of numerical tokens into BERT to obtain
sentence representations, denoting as tenc with the size of B × N tC,
where N t is the length of text tokens concatenate with the [cls] token.
These sentence representations capture the main ideas and themes
from the clinical reports and will be used to interact with the extracted
image representations, which will be discussed in the next section.

Masked contrastive learning with a correlation weighting
mechanism. In this section, our objective is to construct amulti-modal
embedding space using sampled image patch representations venc and
report representations tenc. The fundamental concept is akin to CLIP21,
wherein a multi-modal embedding space is learned by concurrently
training an image encoder and text encoder. Given a batch B of image-
report pairs, the goal is to align the image and text in the feature space
by maximizing the cosine similarity between the image and text
representations of correct image-report pairs while minimizing the
cosine similarity of representations for incorrect pairs.

Let fci( ⋅ ) and fct( ⋅ ) denote linearmappings in the joint embedding
space for image representation and report representation, respec-

tively. Image representations mapping v= f ciðvpoolenc Þ, and report

representations mapping t = f ctðtpoolenc Þ is used to calculate the cosine

similarity matrix < v, t > , where vpool
enc with the size of B × C represents

the tokens-dimension pooling result of venc and tpoolenc also with the size
of B ×C represents the [cls] token result of tenc. With the temperature τ,
the InfoNCE loss41 utilized in a batch is then be described as:

Lin f oNCE = � 1
B

XB
i

log
expðhvi,tii=τÞPB
kexpðhvi,tki=τÞ

 !
ð3Þ

Here, τ is optimized during the model training.
However, unlike the common contrastive learning setting with

full-resolution full-sampled image inputs, two challenges must be
addressed when aligning the multi-modal representations in masked
contrastive learning methods: 1) Do the randomly masked images still
retain sufficient information that can be correlated with the corre-
sponding reports? 2) If yes, what is the extent of the correlation?
Answering these two questions is crucial for establishing meaningful
correlations between the image and the text modalities. From the
perspective of a clinical expert, the answers to these two questions
depend on the quality and relevance of the sampled patches. If the
sampled patches can precisely cover the entire lesion area, the two
modalities should be highly correlated. Otherwise, the correlation
would be low.

To capture the correlation between paired masked images and
reports in a manner that aligns with the expert practice, we propose a
correlation weighting mechanism. The details are depicted in Fig. 1(b).
Specifically, we score the sampled images based on a masked position
map. These scores are then used to adjust the temperature parameter in
contrastive learning and the weights in the contrastive loss function. By
doing so, higherweights canbegiven tohighly correlatedpaired samples
during the network learning process, facilitating network optimization.

For the kth (k = 1, . . . , B) input instance in a batch, we initiate the
process by generating a binary matrix (pk 2 R

ffiffiffi
N

p
×
ffiffiffi
N

p
) based on its

patch sampling mask used for masked auto-encoding, assigning a
value of 0 to the masked regions and a value of 1 to the sampled
regions. This binary matrix is named the masked position map. pk is
then reshaped to a one-dimensional vector cpk 2 RN and a fully con-
nected (FC) layer is learned to generate an importance score for the
instance from the reshaped masked position map cpk (Fig. 1(b)(ii)):
ws

k =
PN

i= 1 wi �dpk,i. Here, wi is the weight of the FC layer, representing
the weight assigned to a specific mask position. Corresponding to all
instances in a batch, we obtain the importance score vector
Ws = fws

kg 2 RB. Additionally, for the weighting purpose, we employed
a softplus activation function to re-scale the range of the importance
scores, facilitating more stable training. The final importance scores
Wc 2 RB are generated as follows:

Wc = log 1 + eW
s

� �
ð4Þ

Then, we employ the obtained importance scores Wc to weight the
image-text sample pairs, ensuring that the model assigns greater
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attention to pairs with more meaningful sampled content (larger
importance scores) during the training process. This weighting
process consists of two components, involving the weighting of the
cosine similarity matrix < v, t > ( < v, t > is also called logits, and in the
following, we will use logits to indicate < v, t > ), and the weighting of
loss terms. Theweighting of logits is similar to the useof the reciprocal
of the temperature coefficient τ. Generally, a smaller temperature
coefficient indicates sharper logits, thereby offering a more rigorous
distribution alignment during the training process. In contrast to the
temperature coefficient, which has the same value for all sample pairs,
our importance scores provide varying weighting values to the digits
of different sample pairs in a batch. Particularly, for the ith input image-
text sample pair, if the sampled image patches are highly correlated
with the corresponding text, a larger importance score (larger wc

i ) is
obtained, and sharper logits are required. Conversely, when the
sampled image patches have a low correlation with the corresponding
text,wc

i is smaller, and relatively uniformdistributed logits are learned.
In the meantime, we further utilize a detached version ofWc to weight
the loss terms, ensuring that samples with higher correlation receive
greater attention.

The proposed masked-contrastive learning loss can thus be
expressed as:

Lcontra = � 1
B

XB
i

log
exp wc

i � hvi,tii=τ
� �PB

k exp wc
i � hvi,tki=τ

� � !
+wc

i log
exp hvi,tii=τ

� �PB
k exp hvi,tki=τ

� � ! !
ð5Þ

The final loss function to train MaCo combines the pretext-task loss
with the masked-contrastive learning loss:

L= λLpret + ð1� λÞLcontra ð6Þ

Here, λ is a hyperparameter to balance the contributions of the two
loss terms.

Implementation details
We used the same data augmentation methods at different training
stages. Specifically, we applied random horizontal flipping, random
affine transformations (with degrees set to 20 and scale ranging from
0.8 to 1.2), and normalized the data with a mean of 0.4978 and a
standard deviation of 0.2449. All experiments were conducted using
the PyTorch framework. The pre-training of MaCo was completed in
approximately 3.5 hours using four NVIDIA A100 GPUs. For the sake of
convenience and comparability, we utilized the widely-used image
encoder ViT-B/16 and employed BERT with a width of 768 as our text
encoder. For pre-training, we set the training batch size to 512 and
employed the AdamWoptimizer, with an initial learning rate of 4.5e-4,
weight decay of 0.05, β1 of 0.9, and β2 of 0.95. We used a symmetrical
design for the contrastive learning lossLinf oNCE , following

21. We set the
value of λ in Eq. (6) to 0.9. The learnable parameter τ in Eq. (3) was
initialized to 0.03. In fine-tuning tasks, following the practice adopted
by the classical methods6,19,22, we utilized the pre-trained image enco-
der as the initialization for the model to be fine-tuned across various
applications, including classification, segmentation, and detection.

For the fine-tuning classification experiments on datasets CheX-
pert, NIH ChestX-ray, and RSNA, we utilized the SGDoptimizer, setting
its momentum to 0.9 and searching for the optimal learning rate
ranging from 8e-3 to 1e-4. For the fine-tuning segmentation experi-
ments on datasets SIIM and COVID Rural, we used the AdamW opti-
mizer, with an initial learning rate of 2e-5, weight decay of 0.05, β1 of
0.9, and β2 of 0.999. For the fine-tuning detection experiments on
dataset RSNA, we employedVITDet29 as the basedetection framework,
andwe utilized the AdamWoptimizerwith an initial learning rate of 3e-
3, weight decay of 0.1, β1 of 0.9, and β2 of 0.999.

In both the pre-training and fine-tuning stages of the image clas-
sification tasks, we warmed up the network by linearly increasing the
learning rate to the set value and then, decreased the learning rate
according to the cosine decay schedule.

Comparative methods
We began our analysis by comparing MaCo with various pre-training
approaches that utilize text as supervision to learn image representa-
tions. These approaches include ConVIRT35, GLoRIA22, BioViL23,
REFERS12, MGCA39, MFLAG42, Med-UniC43, M3AE33, MedKLIP6, MRM19,
LoVT24 and Ark44. Specifically, ConVIRT proposes to learn medical
visual representations by contrasting paired radiographs and sen-
tences from radiology reports. GLoRIA improves upon ConVIRT by
contrasting radiograph patches and words in the reports. BioViL and
REFERS incorporate masked language modeling loss into contrastive
learning, with REFERS introducing a multi-view fusion attention
mechanism to better align the representations of each radiograph and
its associated report. M3AE employsmaskmodeling in both the image
and languagemodalities to investigate the performance of pre-trained
models on natural datasets. MedKLIP utilizes a report filter to extract
medical entities and employs amore complexmodal fusionmodule to
aggregate features. Similar to M3AE, MRM leverages a masking
mechanism in both image and text branches, which has achieved the
most advanced results in the medical field. To comprehensively eval-
uate our method, we also introduced some image-based self-super-
vised learning methods, which include Context Restoration27, Model
Genesis25, TransVW28, C2L26, and ImageNet45.

For the zero-shot tasks, we compared our method with relevant
state-of-art approaches, including ConVIRT35, GLoRIA22, BioViL23,
CheXzero7 and MedKLIP6. It should be noted that CheXzero and
MedKLIP is not capable of handling free-form text, while MRM and
M3AE are unable to achieve zero-shot results due to their training
strategy. Finally, we demonstrated the weight visualization of our
proposed correlation weighting mechanism, where we utilized atten-
tion maps to indicate that our approach can weigh the masked image
representations in an interpretable and clinically plausible manner.

Datasets
We pre-train MaCo using radiographs and clinical reports from the
MIMIC-CXR V2 dataset46. To assess the transferability of the learned
radiograph representations, we perform various X-ray-based down-
stream tasks using multiple datasets, including NIH ChestX-ray45,
CheXpert47, RSNA Pneumonia Detection (RSNA)45,48, SIIM-ACR
Pneumothorax49, COVID-19 Rural50 dataset, and MS-CXR dataset23,
respectively. The following sectionwill introduce the datasets in detail:

MIMIC-CXR v2 is a large dataset comprising 377,110 chest X-rays
associated with 227,827 clinical reports sourced from the Beth Israel
DeaconessMedical Center between 2011 and 2016. During pre-training,
we used all paired data, no matter whether they were frontal or lateral.

CheXpert releases a multi-label dataset for chest X-ray classifica-
tion. To evaluate the performance of our model, we followed the
official guidelines outlined in47 and reported results for five selected
pathologies. As the official CheXpert test set is not publicly available,
we adopted a similar approach as described in35 and used the official
validation set as our test set. Additionally, following19, we sampled
5,000 images from the official training set to construct our validation
set. The resulting training/validation/test split consists of 218,414/
5,000/234 images, respectively, representing the entire dataset.

NIH ChestX-ray (NIH) contains 112,120 frontal-view chest radio-
graph images and focuses on a multi-label classification problem
involving 14 different chest pathologies. The dataset is split into
training, validation, and test sets, with each set comprising 70%, 10%,
and 20% of the total dataset, respectively.

COVID-19 Rural (COVID Rural) is a small-scale collection com-
prising over 200 chest X-ray images with COVID-19 disease
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segmentation masks. We utilize this dataset to evaluate our segmen-
tation performance. The dataset is randomly split into training, vali-
dation, and test sets, with a ratio of 60%, 20% and 20%.

SIIM-ACR Pneumothorax (SIIM) is curated to facilitate the devel-
opment of segmentation models for identifying pneumothorax dis-
ease in chest radiographs. The dataset includes more than 120,000
frontal-view chest X-rays, each accompanied by precise manual seg-
mentationof pneumothorax regions.We leverage this dataset for both
fine-tuning segmentation and zero-shot classification tasks. In con-
structing the fine-tuning dataset, our methodology aligns with estab-
lished practices outlined in22. Specifically, we partition the dataset into
sets for training, validation, and testing, allocating 70%, 15%, and 15% of
the total dataset, respectively.

RSNA Pneumonia Detection (RSNA) is derived from the 2018
RSNA Pneumonia Challenge, comprising a total of 6,012 slices with
bounding box annotations. We use this dataset in fine-tuning classifi-
cation and detection task. For the task of classification, we adhere to
the official data split strategy, partitioning the dataset into a training
set of 25,184 images, a validation set of 1500 images, and a test set of
3,000 images. For the task of detection, in alignment with the
approach adopted in LoVT24, the dataset is partitioned into a training
set consisting of 3,584 images, a validation set comprising 1210 images,
and a test set with 1218 images.

MS-CXR provides annotations in the form of bounding boxes and
sentence pairs that describe clinical findings observed in chest X-ray
images. Each sentence describes a single pathology present in the
image, and there could be multiple manually annotated bounding
boxes associated with the description of a single radiological finding.
The annotations were collected on a subset of MIMIC-CXR images,
which contain labels across eight different pathologies. In total, 1162
annotations of 881 cases were collected, and we utilized the entire
dataset to measure the overlap between labeled bounding boxes and
the results of vision-language association after pre-training.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data used in this paper are from open-source datasets, includ-
ing: MIMIC-CXR v2 (https://physionet.org/content/mimic-cxr-jpg/2.0.
0/), CheXpert (https://stanfordmlgroup.github.io/competitions/
chexpert/), NIH, COVID Rural (https://github.com/ieee8023/covid-
chestxray-dataset), SIIM, RSNA, and MS-CXR.

Code availability
Our code are available at https://github.com/SZUHvern/MaCo.
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